Best Of: Abstracts From The American College of Surgeons

The annual Clinical Congress for the American College of Surgeons will be held at the end of the month. A large number of research papers are presented there, and a smaller subset are related to trauma and critical care.

I’m going to spend the next week and a half or so reviewing many of the ones I believe are the most promising. Keep in mind that these are works in progress, and that many will never see the light of print. I’ll take them apart, trying to see how good each one is. Some are very good, some are hopelessly flawed.

I hope you enjoy the analysis! Let’s see if we learn something new along the way.

Source: The Trauma Professionals’s Blog

EMS: Scoop and Run or Stay and Play for Trauma Care? The Final Answer?

I’ve been discussing the little research there is on stay and play vs scoop and run. And now, hot off the press, we have a paper about the ultimate version of scoop and run, the “drive-by ambulance.” This one looks at outcomes in patients who are dropped at the emergency department by private vehicle. This is the most basic form of prehospital care, with no interventions, just transportation. This type of transport is used by parents with their injured children, police who act as very basic first responders in some cities, and on occasion, gang members.

A multi-institutional group of authors used data in the National Trauma Databank to try to answer this question. They used three years worth of data, comparing outcomes from patients with ground EMS vs private transport who were treated at Level I and Level II trauma centers. Only gunshots and stabs were included, and all patients were 16 or older.  The  authors were focused on only one thing: mortality. This included death in the ED, and a model was developed to adjust risk based on vital signs, injury severity score (ISS), race, and insurance status. Just over 100,000 were included in he final analysis.

Here are the factoids:

  • Black and hispanic patients were more frequently transported by private vehicle, but only by about 3%
  • White patients were more frequently taken by ground EMS, by about 6%
  • Stabs were more likely to be brought by private car than gunshots, 56% vs 44%
  • Mean ISS was significantly higher for those transported by ground EMS (10 vs 5.5)
  • Unadjusted mortality was lower overall for private vehicle, 2% vs 12%
  • The chance of dying in the ED was also decreased in the private transport patients, from 7% to 1%
  • Mortality from both gunshots and stabs were also significantly lower (5% vs 9%, and 0.2% vs 3% respectively)
  • Once adjusted for risk, the lower mortality with private transport remained, with a 60% risk reduction of death. This persisted in the gunshot and stab cohorts as well.

Bottom line: Wow! Although this study has the usual limitations of using a large external database, it was very well designed to compensate for that. And the degree of improvement in survival is surprising. What this study can’t tell us is why. Certainly, some patients benefit from a little extra time to give fluid or blood, intubate, or provide some other treatments. But the patient with penetrating frequently does not need this, they just need definitive control of hemorrhage. The authors even go so far as to suggest that at-risk populations receive education on “scoop and run” if people they know suffer penetrating injury.

The next step is to tease out which components of the stay and play paradigm are the most valuable, and which contribute to the increased mortality in penetrating injury patients.

Reference: Association of Prehospital Mode of Transport With Mortality in Penetrating Trauma A Trauma System–Level Assessment of Private Vehicle Transportation vs Ground Emergency Medical Services. JAMA Surgery, Published online September 20, 2017.

Source: The Trauma Professionals’s Blog

EMS: Scoop and Run or Stay and Play for Trauma Care? Part 3

Scoop and run or stay and play. Is one better that the other? Over my last two posts, I reviewed a couple of papers that were older (6-7 years) and had smaller patient groups. Now let’s look at a more recent one with a larger experience using a state trauma registry.

This one is from the Universities of Pittsburgh and Rochester, and used the Pennsylvania state trauma registry for study material. The authors wanted to really slice and dice the data, postulating that previous studies were not granular enough, such that significant trends could not be seen due to lumping all prehospital time together. They divided prehospital time into three components: response time, scene time, and transport time. To some degree, the first and third components are outside of the prehospital providers’ control.

The records for over 164,000 patients were analyzed. These only included those for patients transported from the scene by EMS, and excluded burns. The prehospital time (PH time) was divided into the three components above. A component was determined to be prolonged if it contributed > 50% of the total PH time.

Here are the factoids:

  • Half of the patients had a prolonged PH time interval (52%)
  • Response time was prolonged in only 2%, scene time was prolonged in 19%, and transport time was longer in 31%
  • Mortality was 21% higher in those with a prolonged scene time component
  • There was no mortality difference in patients with no prolonged time components, or those with prolonged response or transport times
  • These patterns held for both blunt and penetrating injury
  • Extrication and intubation were common reasons for prolonged scene time. Extrication added an average of 4.5 minutes, and intubation 6.5 minutes.
  • Mortality was increased with prehospital intubation, but this effect lessened in severe TBI
  • Increasing experience with extrication and intubation appeared to decrease the mortality from the increased scene time they caused

Bottom line: This paper suggests that the dichotomy of “scoop and run” vs “stay and play” may be too crude, and that a more nuanced approach should be considered. In plain English, the optimal management lies somewhere in between these polar opposites. Actual on scene time appears to be the key interval. EMS providers need to be aware of scene time relative to response and transport times. Patients with specific injury patterns that benefit from short scene times (hypotension, flail, penetrating injury) can quickly be identified and care expedited. Increased scene time due extrication cannot be avoided, but prehospital intubation needs to be considered carefully due to the potential to increase mortality in select patients. 

Reference: Not all prehospital time is equal: Influence of scene time on mortality. J Trauma 81(1):93-100, 2016.

Source: The Trauma Professionals’s Blog

EMS: Scoop and Run or Stay and Play for Trauma Care? Part 2

Yesterday, we looked at an older study that kind of examined the scoop and run vs stay and play debate.  Let’s move forward in time a little bit, and evaluate the two options in a penetrating trauma model.

This one is from the anesthesia and intensive care departments at the university hospital in Copenhagen. The authors prospectively captured information on 462 penetrating trauma victims, then looked up their 30 day survival status in a national administrative database.

Here are the factoids:

  • Only 95% of patient records (446) were available for 30 day review (better that in the US!)
  • Of those, 40 were dead (9%)
  • Using raw statistics, there seemed to be a significant increase in mortality if the prehospital crew was on scene more than 20 minutes
  • However, when corrected for age, sex, injury pattern, etc. there was no significant difference in survival for short vs longer scene stays
  • Multivariate analysis identified the number of procedures performed at the scene as a significant predictor of mortality, regardless of time

Bottom line: We still can’t seem to show a difference in patients who are tossed in the back of the squad and driven vs those who have IVs, immobilization, and other things done to begin resuscitation and increase safety prior to transport! However, the bit about number of procedures is intriguing. Is this just another surrogate for time? Are there unrecognized complications from them that affect survival?

Tomorrow I’ll look at a recent publication from the US that gives us yet another angle on this question.

Reference: On-scene time and outcome after penetrating trauma: an observational study. Emerg Med J 28(9):87-801, 2011.

Source: The Trauma Professionals’s Blog

EMS: Scoop and Run or Stay and Play for Trauma Care? Part 1

Scoop and run vs stay and play are traditionally EMS concepts. Do I stay at the scene to perform invasive procedures and begin resuscitation, or do I perform the minimum I can and get to the nearest hospital ASAP?

Some newer papers have addressed this debate very recently with some intriguing results, but I wanted to start out with one that I’ve discussed before.

For trauma patients time is the enemy and there is a different flavor of scoop and run vs stay and play. Do I take the patient to a nearby hospital that is not a high level trauma center to stay and play, or do I scoop and run to the nearest Level I or II center?

Here are the factoids:

  • Admissions to a group of 8 trauma centers were analyzed over a 3 year period, and included a total of 1112 patients
  • A total of 76% were taken directly to a Level I trauma center (scoop and run, 76%); 24% were transferred to the trauma center from another hospital (stay and play?).
  • Patients who were taken to a non-trauma center first received 3 times more IV crystalloid, 12 times more blood, and were nearly 4 times more likely to die!

Obviously, the cause of this increased mortality cannot be determined from the data. The authors speculate that patients may undergo more aggressive resuscitation with crystalloid and blood at the outside hospital making them look better than they really are, and then they die. Alternatively, they may have been under-resuscitated at the outside hospital, making it more difficult to ensure survival at the trauma center.

Bottom line: This is an interesting paper, but it’s kind of a mutant. When I think about the stay and play concent, I’m really thinking about delays going to a trauma center, not a non-trauma hospital fierst! And the authors never really define a “nontrauma hospital.” Does a Level III or IV center count? How did patients who stayed at the outside hospital do?

Obviously, a lot of work needs to be done to add detail to this particular paper. Tomorrow, I’ll look at this concept as it applies to patients with penetrating injury.

Reference: Scoop and run to the trauma center or stay and play at the local hospital: hospital transfer’s effect on mortality. J Trauma 69(3):595-601, 2010.

Source: The Trauma Professionals’s Blog

Why Is So Much Published Research So Bad?

I read lots of trauma-related articles every week. And as I browse through them, I often find studies that leave me wondering how they ever got published. And this is not a new phenomenon. Look at any journal a year ago. Five years ago. Twenty years ago. And even older. The research landscape is littered with their carcasses.

And on a related note, sit down with any serious clinical question in your field you want to answer. Do a deep dive with one of the major search engines and try to get an answer. Or better yet, let the professionals from the Cochrane Library or other organization do it for you. Invariably, you will find hints and pieces of the answer you seek. But never the completely usable solution you desire. 

Why is it so hard? Even with tens of thousands of articles being published every year?

Because there is no overarching plan! Individuals are forced to produce research as a condition of their employment. Or to assure career advancement. Or to get into medical school, or a “good” residency. And in the US, Level I trauma centers are required to publish at least 20 papers every three years to maintain their status. So there is tremendous pressure across all disciplines to publish something.

Unfortunately, that something is usually work that is easily conceived and quickly executed. A registry review, or some other type of retrospective study. They are easy to get approval for, take little time to complete and analyze, and have the potential to get published quickly.

But what this “publish or perish” mentality promotes is a random jumble of answers that we didn’t really need and can’t learn a thing from. There is no planning. There is no consideration of what questions we really need to answer. Just a random bunch of thoughts that are easy to get published but never get cited by anyone else.

Bottom line: How do we fix this? Not easily. Give every work a “quality score.” Instead of focusing on the quantity of publications, the “authorities” (tenure committees and the journal editors themselves) need to focus in on their quality. Extra credit should be given to multicenter trial involvement, prospective studies, and other higher quality projects. These will increase the quality score. The actual number of publications should not matter as much as how much high quality work is in progress. Judge the individual or center on their total quality score, not the absolute number of papers they produce. Sure, the sheer number of studies published will decline, but the quality will increase exponentially!

Source: The Trauma Professionals’s Blog

Are You Overusing Chest CT In Kids?

Many centers have developed guidelines for ordering various imaging studies, mostly in adults. These frequently dictate indications for head, cervical spine, and abdominal CT. The use of chest CT guidelines are far less common. And for the most part, such guidelines are significantly lacking for pediatric trauma evaluation.

Oregon Health Sciences University published a study detailing the use and utility of chest CT in pediatric patients, which they defined as age less than or equal to 18. They also looked at the impact of implementation of imaging guidelines for chest CT. They pooled data on blunt injuries from two Portland children’s hospitals. They collected a historical cohort over 8 years ending in 2015. One hospital had implemented region-specific imaging guidelines in 2010, and the impact of this was observed. They pooled data from both centers to identify mechanisms predictive of significant thoracic injury.

Here are the factoids:

  • Nearly 3000 patients were reviewed for thoracic CT use across the study period.
  • 1451 had chest x-ray only, 933 had chest CT only, and 567 had both
  • Although CT use in other body regions significantly declined across the study period, thoracic CT did not.
  • Chest CT changed management on only 17 of 1500 patients (1%).  There were 2 operations, 1 stent placement, 1 medical management, and 13 changes I consider rather weak (chest tube insertion, negative workup)
  • All clinically significant findings were predicted by an abnormal chest x-ray and motor vehicle mechanism

Bottom line: Chest CT continues to be overused in pediatric blunt trauma (and adults too!). This is especially unsettling due to it’s low yield and the unclear future danger of high dose radiation received during childhood. The major issue with this study is that it mixes adults and children and calls them all children. Specifically, most patients age 13-14 or above act anatomically and physiologically more like adults. It would have been nice to separate out the lower age group, but this typically results in very low numbers for analysis. In this case, it should have been possible because the median age was 13.

I recommend that all centers adopt some kind of blunt imaging guidelines to reduce clinician variability and unneeded radiation exposure. This is particularly true for children, since they are more sensitive to it and will live long enough to potentially experience the adverse effects from it. 

For both children and adults, chest CT should be reserved for evaluation of potential aortic injury, and nothing else. Rib fractures, hemothorax, and pneumothorax are best evaluated by traditional chest x-ray, and therapeutic decisions based on this alone. Abnormal chest x-ray findings, coupled with a high-energy mechanism (MVC, crush, pedestrian struck, and fall from a real height (3+ storys) should drive the decision to obtain a chest CT.

Related posts:

Reference: Limiting thoracic CT: a rule for use during initial pediatric trauma evaluation. J Ped Surg, In press, Aug 28, 2017.

Source: The Trauma Professionals’s Blog

Making The Trauma Team Time Out Even Better!

Over the past two days, I’ve discussed a method for optimizing the hand-off process between prehospital providers and the trauma team. Besides improving the quality and completeness of information exchange, it also fosters a good relationship between the two. All too often, the medics feel that “the trauma team is not listening to me” if the procedure is to move the patient onto the ED bed as quickly as possible.

And they are right! As soon as the patient hits the table, the trauma team starts doing what they do so well. It’s impossible for humans to multi-task, even though they think they can (look at texting and driving). We switch contexts with our brain, from looking at the patient to listening to EMS, back and forth. And it takes a few extra seconds to switch from one to the other. Team members will not be able to concentrate on the potentially important details that are being relayed.

What should you do if the team doesn’t want to wait?

First, educate them. Except for those who are in extremis or arrest, the patient can wait on the EMS stretcher for 30 seconds. Nothing harmful is going to happen in that short period.

Then, create a hard stop. The easiest way to do this is to place a laminated copy of the timeout procedure on the ED bed. And the rule is that the card doesn’t move until the timeout is done. This is very similar to what happens in the OR. The process should take only 30 seconds, then it’s over and the team can start.

Here’s a copy of a sample TTA Timeout card:

Download a TTA timeout card

Modify it to suit your hospital and process, and try it out!

Thanks to the trauma team at Ridgeview Hospital in Waconia MN for telling me about this cool trick!

Source: The Trauma Professionals’s Blog

Prehospital To Trauma Team Handoff: A Solution

I wrote about handoffs between EMS and the trauma team yesterday. It’s a problem at many hospitals. So what to do?

Let’s learn from our experience in the OR. Best practice in the operating room mandates a specific time out process that involves everyone in the OR. Each participant in the operation has to stop, identify the patient, state what the proposed procedure and location is, verify that the site is marked properly, and that they have carried out their own specific responsibilities (e.g. infused the antibiotic).

image

Some trauma centers have initiated a similar process for their trauma team as well. Here’s how it works:

  • The patient is rolled into the resuscitation room by EMS personnel, but remains on the stretcher.
  • Any urgent cares continue, such as ventilation.
  • The trauma team leader is identified and the EMS lead gives a brief report while everyone in the room listens. The report consists of only mechanism, all identified injuries, vital signs (including pupils and GCS), any treatments provided. This should take no more than 30 seconds.
  • An opportunity for questions to be asked and answered is presented
  • The patient is moved onto the hospital bed and evaluation and treatment proceed as usual.
  • EMS personnel provide any additional information to the scribe, and may be available to answer any additional questions for a brief period of time.

Bottom line: This is an excellent way to improve the relationship between prehospital and trauma team while improving patient care. It should help increase the amount of clinically relevant information exchanged between care providers. Obviously, there will be certain cases where such a clean process is not possible (e.g. CPR in progress). I recommend that all trauma programs consider implementing this “Trauma Activation Time Out For EMS” concept.

Tomorrow, I’ll share a best practice to make this process even better!

Source: The Trauma Professionals’s Blog

The EMS Handoff: Opportunity for Improvement

Handoffs occur in trauma care all the time. EMS hands the patient off to the trauma team. ED physicians hand off to each other at end of shift. They also hand off patients to the inpatient trauma service. Residents on the trauma service hand off to other residents at the end of their call shift. Attending surgeons hand off to each other as they change service or a call night ends. The same process also occurs with many of the other disciplines involved in patient care as well.

Every one of these handoffs is a potential problem. Our business is incredibly complicated, and given that dozens of details on dozens of patients need to be passed on, the opportunity for error is always present. And the fact that resident work hours are becoming more and more limited increases the need for handoffs and the number of potential errors.

Today, I’ll look at information transfer at the first handoff point, EMS to trauma team. Some literature has suggested that there are 16 specific prehospital data points that affect patient outcome and must be included in the EMS report. How good are we at making sure this happens?

An observational study was carried out at a US Level I trauma center with video recording capabilities in the resuscitation room. Video was reviewed to document the “transmission” part of the EMS report. Trauma chart documentation was also reviewed to see if the “reception” half of the process by the trauma team occurred as well.

Here are the factoids:

  • A total of 96 handoffs were reviewed over a one year period
  • The maximum number of data elements in the study was 1536 (96 patients x 16 data elements)
  • The total number “transmitted” was 473, but only 329 of those were “received.”
  • This is not quite as bad as it seems, since 483 points were judged as not applicable by the reviewers. However, this left 580 that were applicable but were not mentioned by EMS.
  • Of the 16 key elements, the median number transmitted was 5, with a range of 1-9.

This sounds bad. However, the EMS professionals and the physicians have somewhat different objectives. EMS desperately wants to share what they know about the scene and the patient. The trauma team wants to start the evaluation process using their own eyes and hands. What to do?

Bottom line: EMS to trauma team handoffs are a problem for many hospitals. EMS has a lot of valuable information, and the trauma team wants to keep the patient alive. They are both immersed in their own world, working to do what they think is best for the patient. Unfortunately, they could do better if the just worked together a bit more.

Tomorrow I’ll share a solution to the EMS-trauma team handoff problem.

Reference: Information loss in emergency medical services handover of trauma patients. Prehosp Emerg Care 13:280-285, 2009.

Source: The Trauma Professionals’s Blog

The Regions Trauma Website