The ICU Bounce Back

We’ve all experienced it. A seriously injured trauma patient is admitted to the ICU and begins the process of recovery. Everything looks well, and after a few days they’re transferred to a ward bed. But then they languish, never really doing what we expect. Finally (and usually in the middle of the night), they begin to look bad enough where we have to transfer them back to the ICU. Before or after the call to the Rapid Response Team. Yes, it’s the feared “unexpected readmission to ICU.”

What’s the problem here? A failure of the ICU team? Did they send the patient out too soon? Did we all miss something about the patient? And is there any way we can avoid this problem? The major issue is that these “bounce backs” tend to do poorly compared to patients who successfully stay in their ward bed. Estimates are that mortality for patients successfully and finally discharged from the ICU range from 4-8%, whereas the mortality in bounce back patients is 20-40%!

Researchers at the Medical University of South Carolina in Charleston looked at the characteristics that defined the bounce back patient. They reviewed nearly 2000 patients discharged from their trauma ICU and analyzed the variables that predicted an unplanned bounce back. They noted the following interesting factoids:

  • More than two thirds of bounce backs occurred within 3 days
  • Males, patients with an initial GCS < 9, transfer during the day shift  were the major risk factors
  • More comorbidities was associated with a higher chance of bounce back
  • Mortality in the bounce back group was 20%
  • The most common immediate factors causing bounce back were respiratory failure or bleeding

Bottom line: This is an intriguing single-institution study that supports my own personal observations. Fewer bounce backs occur at night because staffing tends to be lower and there is more resistance to transfers out of the ICU then. Both the ICU team and the ward team need to scrutinize every transfer carefully. Significant head injury or the presence of medical comorbidities should trigger a careful assessment to make sure that the transfer is appropriate. Otherwise, your patient may be placed in unnecessary jeopardy.

Tomorrow, I’ll discuss when an unexpected return to ICU is not an unexpected return!

Reference: Intensive care unit bounce back in trauma patients: An analysis of unplanned returns to the intensive care unit. J Trauma 74(6):1528-1533, 2013.

Source: The Trauma Professionals’s Blog

Surgical Residents And The Danger Of Social Media

Social media usage is ubiquitous, and has a higher prevalence of usage in younger age groups. When the paper I am reviewing was written, 71% of adults with internet access reported using Facebook, and two thirds checked it daily. And now, three years later, I’m sure it’s used even more.

Unfortunately, many people don’t have a good sense of what is appropriate or not. And coupled with confusion about privacy settings, some post things that they probably shouldn’t. And unfortunately, everyone else on the internet can view them.

As a resident, it is more common to be “fired” from residency for unprofessional conduct, not cognitive failure or malpractice. When one is under investigation, the professional organization conducting it may look at prior behavior. And these days, that behavior may be years old and posted for all to see.

Is this a problem? Surgeons at the University of Nebraska were interested in how Facebook was used by surgical residents. They identified surgical residencies at 12 states in the Midwest region. They found all surgical residencies within the region and searched their program websites for the names of active residents. Facebook accounts were then created by the authors and were used to determine which of these residents had their own accounts.

The researchers then viewed those pages and classified the content into three categories: professional, potentially unprofessional, and clearly unprofessional.  Definitions were based on criteria from the ACGME and the AMA. Accounts that were not accessible to the public were judged professional.

A total of 57 surgical residencies were identified, and 40 provided an institutional website with a current roster of their residents. Of 996 surgical residents, the accounts of 319 residents could be evaluated.

Here are the factoids:

  • One third of residents had identifiable Facebook accounts
  • About 74% had only professional content on their site
  • This means that a quarter had potentially or clearly unprofessional content on their sites
  • Clearly unprofessional content included:
    • binge drinking (5 pints of beer in front of a dinner plate, keg stands, comments about being drunk or hung over)
    • sexually suggestive photos (simulated oral sex, female residents in bikinis pointing to their breasts, simulating intercourse on a large cannon)
    • HIPAA violations

Bottom line: Be careful! The use of social media is pervasive. Inappropriate or unprofessional can end a career, or can come back to haunt you years later. And this phenomenon is not limited to surgical residents. All professionals, even attending physicians, may succumb to its charms.

Know the social media policy for your hospital or residency program. Be very careful, and think very carefully about everything you post. Take advantage of built-in privacy settings for the platform you are using. But don’t assume that using them will keep inappropriate material from getting out.  If in doubt, show your potential post to a trusted and reliable friend for a “second opinion.” Otherwise you may find your (not so) friendly “compliance police” knocking on your door. And possibly ending your career.

Reference: An assessment of unprofessional behavior among surgical residents on Facebook: a warning of the dangers of social media. J Surg Educ 71(6):e28-e32, 2014.

Source: The Trauma Professionals’s Blog

The July 2017 Trauma MedEd Newsletter Is Here!

Welcome to the current newsletter. This one is dedicated to all of you out there who receive incoming trauma patient transfers from other hospitals. Here’s the scoop on what’s inside:

  • Can Transfer Patients Actually Pay Their Bills?
  • EMS Documentation In Transfer Patients
  • Technology To Reduce Radiation Exposure
  • The Value Of Reinterpreting Outside CT Scans
  • Optimizing Feedback to Referring Hospitals

To download the current issue, just click here! Or copy this link into your browser: http://bit.ly/TME201707

I’ve also included a sample transfer feedback form so you don’t forget anything when you send the patient. There is also a link to a Word version so you can customize it for your center. The link is:
http://bit.ly/trauma-fb

To view and download back issues, just click here.

Newsletter

Source: The Trauma Professionals’s Blog

What Happens To Your Average Subarachnoid Hemorrhage?

Management of traumatic brain injury (TBI) is a common issue faced by trauma professionals. And isolated subarachnoid hemorrhage (SAH) is one of the more common presentations. In many centers, this diagnosis frequently results in admission to the hospital, neurosurgical consultation, and repeat imaging.

Is this too much care? We adopted a practice guideline nearly two years ago based on our own clinical experience that eliminated the last two. Patients were still admitted for neurologic monitoring for 16 hours. But is even this too much?

What we really need is a better understanding of the natural history of uncomplicated traumatic SAH. Well, a study from Sunnybrook and the University of Toronto does just that. They performed a 17 year meta-analysis of the literature on isolated SAH with mild TBI (GCS 13-15). They pared their initial literature search of nearly 2900 studies down to the usual few, 13 in this case. All but one were retrospective, of course, and they had the usual design flaws.

Here are the factoids:

  • How many patients eventually needed neurosurgical intervention?  0 (Well, almost zero. It was 0.0017%, to be exact.)
  • How many had progression of the SAH? About 6%
  • How many had neurologic deterioration? 0.75%, which included two  patients with increased headache and one with some confusion. Two developed intraparenchymal hemorrhage (one was on anticoagulants)
  • How many died? Only 1 died from neurologic causes, and that patient was anticoagulated at the time of injury.

Bottom line: It looks like we may be overdoing it for patients with isolated SAH and mild TBI. The natural history seems to be fairly benign, unless the patient is taking anticoagulants. The type of drug was not specified, so warfarin, aspirin, clopidogrel, and the newer anticoagulants should all be included.

Perhaps it’s time to update the our practice guidelines further. It looks like most of these simple, isolated SAH can be evaluated and released. However, if the GCS is 13 or 14, they should still be admitted for monitoring for a short period. And if on anticoagulants, admission with a repeat CT is in order.

Related posts:

Reference: The clinical significance of isolated traumatic subarachnoid hemorrhage in mild traumatic brain injury: A meta-analysis. J Trauma , published ahead of print, July 8 2017.

Source: The Trauma Professionals’s Blog

Routine CT After Operative Exploration For Penetrating Trauma

CT scans are commonly used to aid the workup of patients with blunt trauma. They are occasionally useful in penetrating trauma, specifically when penetration into a body cavity is uncertain and the patient has no hard signs that would send him or her immediately to the operating room.

Is there any role in operative penetrating trauma, after the patient has already been to the OR? The dogma has always been that the eyeballs of the surgeon in the OR are better than any other imaging modality. Really?

The surgical group at San Francisco General addressed this question by retrospectively reviewing 6 years of their operative penetrating injury registry data. They were interested in finding how many occult injuries (seen with CT but not by the surgeon) were found on a postop CT. A total of 225 patients who underwent operative management of penetrating abdomen or chest injury were included.

Here are the factoids:

  • Only 110 patients had a postop CT scan; 73 had scans within the first 24 hours, the other 37 were scanned later
  • Rationale for early scan was to investigate retroperitoneal injury in half of patients, but frequently no indication was given (41%)
  • Rationale for late scan was for workup of ileus in one third, or for evaluation of new or unexpected clinical problems
  • Occult injuries were found in about half of early CT patients (52%), and 22% of late CT patients
  • The most common occult injuries were fractures, GU issues, regraded solid organ injury, and unrecognized vascular injuries
  • Several management changes occurred, including

Bottom line: There appears to be a significant benefit to sending some penetrating injury patients to CT in the early postop period. Specifically, those with injury to the retroperitoneum, deep into the liver, near the spine, or with multiple and complicated injuries would benefit. Simple stabs and gunshots that stay away from these areas/structures probably do not need followup imaging. 

Rreference: Routine computed tomography after recent operative exploration for penetrating trauma: What injuries do we miss? J Trauma, published ahead of print, May 11, 2017.

Source: The Trauma Professionals’s Blog

Top 10 Worst Complications: #1 Nasocerebral Tube

Minor complications from nasogastric tube insertion occur relatively frequently. Emesis is fairly common when the gag reflex is stimulated by the tube in the back of the oropharynx. An infrequent but possibly fatal one is insertion through the cribriform plate. 

The cribriform plate is located directly posterior to the nares and is part of the ethmoid bone. It is very porous in nature and weaker than the surrounding portions of the ethmoid. It is easily fractured, and can be seen is association with basilar skull fractures. This is one source for rhinorrhea in patients with these fractures.

Cribriform fracture is a contraindication to unprotected insertion of a nasogastric tube. If you look at the sagittal section below, the plate lies directly behind the nares. When inserting the NG tube, we are usually taught to aim the tube straight back. Unfortunately, this aims it directly at the cribriform. If a fracture is present, it is possible that you may be inserting a nasocerebral tube!

Cribriform plate - sagittal section

The usual symptoms when this occurs consist of immediate neurologic deterioration to coma, and a unilateral or bilateral blown pupil. The tube must not be withdrawn, because it will cause significant injury to the base of the brain. A stat neurosurgical consultation must be obtained, and if the patient is salvageable, the tube must be withdrawn through a craniectomy.

To avoid this dreaded complication, identify patients at risk for cribriform injury. They are:

  • patients with signs of trauma from eyebrows to zygoma
  • comatose patients
  • patients with signs of basilar skull fracture (Battle’s sign, raccoon eyes, oto- or rhinorrhea)

If your patient is at risk, follow these guidelines:

  • first, does the patient really need a gastric tube?
  • if comatose, insert an orogastric tube
  • if awake, don’t put the tube in their mouth, as they will gag continuously. Instead, place a lubricated, curved nasal airway. Then lube up a slightly smaller Salem sump tube and pass it through the airway.

Source: The Trauma Professionals’s Blog

Nausea In The Trauma Bay: Gastric Tube vs Anti-Emetic Drugs?

Nausea and vomiting are common problems in trauma patients, particularly those in a trauma activation. Inciting factors include pain, full stomach from food eaten before the event or blood swallowed after, or reaction to pain medications. For years, trauma professionals reached for the lowly gastric tube to evacuate stomach contents to “solve” the problem.

But how many of you have seen a patient forcefully empty their stomach as soon as the tube touches the oropharynx? And of course, your patient is lying supine, so the vomitus goes straight up, then back down into their airway. And if their mental status is not quite right, they may aspirate, causing even bigger problems.

We’ve had anti-emetic medications for a long time, some more effective than others. Only recently have we begun to rely on these as a first line defense in the trauma resuscitation room. But do they work? Are they safer?

The University Medical Center Utrecht in the Netherlands looked at this problem. They changed their policy from inserting a gastric tube to administering anti-emetics at the beginning of 2014. They studied their experience for the 6 months before and 6 months after the policy change. They inserted an orogastric (OG) tube preferentially before the switch, and used ondansetron and/or metoclopramide after.

Here are the factoids:

  • A total of 1446 trauma patients were admitted during this period. After excluding patients who were intubated or did not complain of nausea, 453 were analyzed (30%)
  • 20% of patients who had an OG tube placed vomited vs only 3% receiving medication (significant)
  • After therapy, 14% of patients receiving an OG were still nauseated vs only 2% getting meds (also significant)
  • 3 patients vomited and aspirated after OG placement, and 1 developed a pneumonia. 2 patients became bradycardic and med administration, and one developed QT-prolongation

Bottom line: This is a relatively small, retrospective study. Furthermore, the choice of gastric tube route (oral) is a setup for gagging and vomiting. Nasogastric tubes are a bit less noxious, but can’t be inserted in all patients (see tomorrow’s post). Even so, the use of anti-emetics in trauma patients complaining of nausea seems like the kinder, gentler way to go. 

Which drug to use? Previous studies have shown that ondansetron 4mg is as effective as 8mg, and that this drug is about equally as effective as metoclopramide. There is also some evidence that giving both is more effective than just giving one.

Gastric tubes are still important, particularly in the comatose patient. But since these patients are at risk for cribriform plate injury, only the oral route should be used.

Reference: Analysis of two treatment modalities for the prevention of vomiting after trauma: orogastric tube or anti-emetics. Injury (accepted manuscript, in press) online 8 July 2017.

Source: The Trauma Professionals’s Blog

When Is It Too Late To Call A Trauma Activation?

This is a related, follow-on post from yesterday, where I discussed activating your trauma team after transfer from another hospital. What about patients presenting directly to your hospital, but some time after their injury?

Admit it. It’s happened to you. You get paged to a trauma activation, hustle on down to the ED, and get dressed. The patient is calmly and comfortably lying on a cart, staring at you like you’re from Mars. Then you hear the story. He has a grade V spleen injury. But he just got back from CT scan. And his car crash was yesterday!

Is this appropriate? The answer is no! But, as you will see, the answer is not always as obvious as this example. The top thing to keep in mind in triggering a trauma activation appropriately is the reason behind having them in the first place.

The entire purpose of a trauma activation is speed. The assumption must be that your patient is dying and you have to (quickly) prove that they are not. It’s the null hypothesis of trauma.

Trauma teams are designed with certain common features:

  • A group of people with a common purpose
  • The ability to speed through the exam and bedside procedures via division of labor
  • Rapid access to diagnostic studies, like CT scan
  • Availability of blood products, if needed
  • Immediate access to an OR, if needed
  • Recognition in key departments throughout the hospital that a patient may need resources quickly

Every trauma center has trauma activation triage criteria that try to predict which patients will need this kind of speed. Does the patient in the example above need this? NO! He’s already been selected out to do well. Why, he’s practically finished the nonoperative solid organ management protocol on his own at home.

Here are some general rules:

  • If the patient meets any of your physiologic and/or anatomic criteria, they are or can be sick. Trigger immediately, regardless of how much time has passed.
  • If they meet only mechanism criteria and it’s been more than 6 hours since the event, they probably do not need the fast track.
  • If they only meet the “clinician / EMS judgment” criteria, think about what the suspected injuries are based on a quick history and brief exam. Once again, if more than 6 hours have passed and there are no physiologic disturbances, the time for needing a trauma activation is probably past.

If you do decide not to trigger an activation in one of these cases, please let your trauma administrative team (trauma medical director, trauma program manager) know as soon as possible. This may appear to be undertriage as they analyze the admission, and it’s important for them to know the reasoning behind your choice so they can accurately document under- and over-triage.

Related posts:

Source: The Trauma Professionals’s Blog

Do I Have To Call My Trauma Team For Incoming Transfers?

I had a great question sent in by a reader last week:

Some trauma centers receive a number of transfers  from referring hospitals. Much of the time, a portion of the workup has already been done by that hospital. If the patient meets one or more of your trauma activation criteria, do you still need to activate your team when they arrive?

And the answer is: sometimes. But probably not that often.

Think about it. The reason you should be activating your team is that you suspect the patient may have an injury that demands rapid diagnosis and treatment. The purpose of any trauma activation is speed. Rapid evaluation. Fast lab results. Quick access to CT scan or OR. If a significant amount of time has already passed (transported to an outside hospital, worked up for an hour or two, then transported to you), then it is less likely that a trauma activation will benefit the patient.

There are four classes of trauma activation criteria. I’ll touch on each one and the need to activate in a delayed fashion if present, in priority order.

  • Physiologic. If there is a significant disturbance in vital signs while in transit to you (hypotension, tachycardia, respiratory problems, coma), then you must activate. Something else is going on that needs to be corrected as soon as the patient arrives. And remember the two mandatory ACS criteria that fall into this category: respiratory compromise/need for an emergent airway, and patients receiving blood to maintain vital signs. But a patient who needed an airway who is already intubated and no longer compromised does not need to be a trauma activation.
  • Anatomic. Most simple anatomic criteria (e.g. long bone or pelvic fractures) do not need a trauma activation unless the patient is beginning to show signs of physiologic compromise. However, anatomic criteria that require rapid treatment or access to the OR (proximal amputations, mangled or pulseless extremities, spinal cord injury) should be activated.
  • Mechanism. Most of the vague mechanistic criteria (falls, pedestrian struck, vehicle intrusion) do not require trauma activation after transfer to you. But once again, if the mechanism suggests a need for further rapid diagnosis or treatment (penetrating injury to abdomen), then activate.
  • Comorbidities. This includes underlying diseases, extremes of age, and pregnancy. In general, these will not require trauma activation after they arrive.

Bottom line: In many cases, the patient transferred in from another hospital will not need to be a trauma activation, especially if they have been reasonably assessed there. The patient should be rapidly eyeballed by your emergency physicians, and if there is any doubt about their condition, activate then.

However, if little workup was done at the outside hospital (my preference), and the injuries are “fresh” (less than a few hours old), then definitely call your team. 

Related posts:

Source: The Trauma Professionals’s Blog

Don’t Try This At Home!

Every Fourth of July, someone just has to try an “off label” use for fireworks.

Don’t try this at home. Even “trained professionals” would never do anything like this.

Source: The Trauma Professionals’s Blog

The Regions Trauma Website